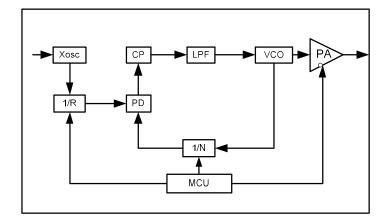


Description

WF306TBM is one ASK transmitter for remote control application. The circuit working frequency range is about 300MHz-450MHz. It is mainly intended for the ISM (Industrial, Scientific and Medical) band 315/433MHz.

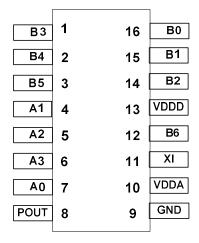
WF306TBM integrates one phase-locked loop (PLL) and MCU to set different working frequency and select the transmitting power.

WF306TBM is designed for remote wireless control systems. It is available in SOP-16 package and working over the extended temperature range (-40 to +85°C).


Features

- Working frequency range: 300MHz-450MHz.
- Tunable output power: 13dBm @ 3V with 50 ohm load, typ.
- Low supply voltage: 2.3V-3.6V for 315/433MHz.
- Low supply voltage detection
- Automatic shutdown protection
- 3-wire SPI interface.

Applications


- Remote Keyless Entry (RKE)
- · Remote Control, Garage door and gate openers
- AMR-Automatic Meter Reading
- Wireless alarm and security system.

Block Diagram

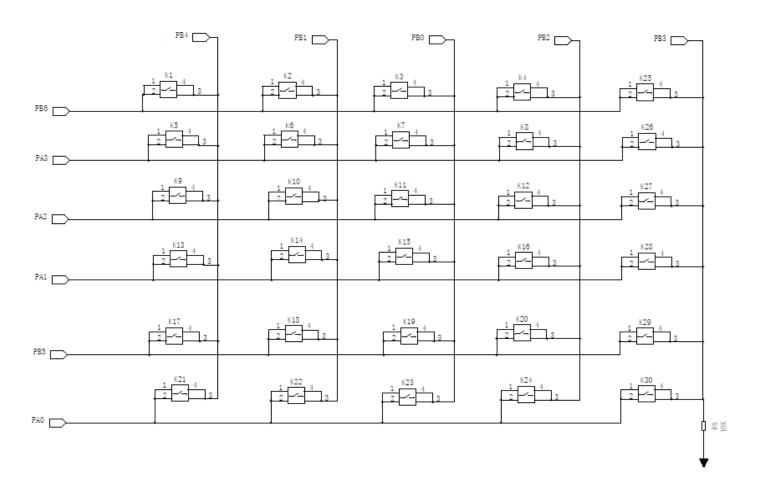
Pin Configuration

Table 1. Pin Description

Pin	Symbol	I/O	Description			
1	В3	I	Input pin or open-drain output pin with system wake-up function System clear (RESET) input. Active low RESET to the device. Weak pull-high always on if configured as RSTB. Voltage on this pin must not exceed VDD, See IOB3 diagram for detail description.			
2	В4	I/O	Bi-direction I/O pin with system wake-up function (RCOUT optional in IRC/ERIC, ERC mode) Software controlled pull-high/open-drain Oscillator crystal output (HF, XT, LF mode) Outputs with the instruction cycle rate (RCOUT optional in IRC/ERIC, ERC mode)			
3	B5	I/O	Bi-direction I/O pin with system wake-up function(IRC mode) Software controlled pull-high/open-drain Oscillator crystal input(HF,XT,LF mode) External clock source input(ERIC,ERC mode)			
4	A1	I/O	A0 ~ A3 as bi-direction I/O pin Software controlled pull-down			
5	A2	I/O	A0 ~ A3 as bi-direction I/O pin Software controlled pull-down			
6	A3	I/O	A0 ~ A3 as bi-direction I/O pin Software controlled pull-down			
7	A0	I/O	A0 ~ A3 as bi-direction I/O pin Software controlled pull-down			
8	POUT		Transmitted RF output			
9	GND		Ground			
10	VDDA		Analog circuit Power suplly			
11	XI		Input terminal of local oscillation signal.It is connected to the crystal or driven by an external clock.			
12	В6	I/O	Bi-direction I/O pin with system wake-up function Software controlled pull-high/open-drain			

13	VDDD		Digital circuit Power supply
14	B2	I/O	Bi-direction I/O pin with system wake-up function Software controlled pull-high/open-drain/pull-down External clock input to Timer0
15	B1	I/O	Bi-direction I/O pin with system wake-up function Software controlled pull-high/open-drain/pull-down
16	В0	I/O	Bi-direction I/O pin with system wake-up function Software controlled pull-high/open-drain/pull-down External interrupt input

Note: A0 connect to WF306TBM SDIN, B6 connect to WF306TBM SEN, B7 connect to WF306TBM SCLK


Table 2. Absolute Maximum Rating

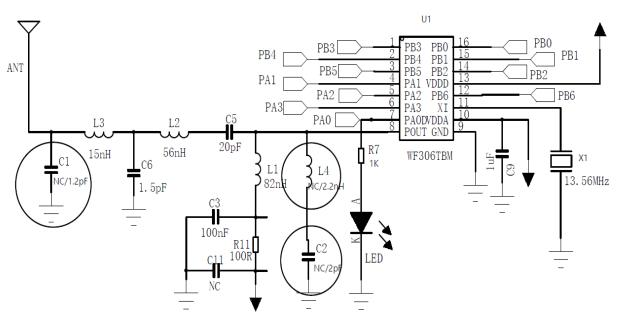
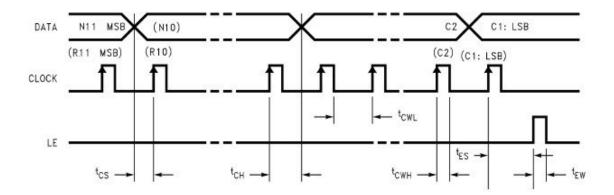

Item	Rating
Supply Voltage, VDD	+ 5.6V
Inputs and Clock Outputs	- 0.5V to + 5.6V
Storage Temperature	- 65 to + 150 oC
Soldering Temperature	+ 260 oC

Table 3. Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage	V _{DD}	300MHz-450MHz	2.3	3.0	3.6	V
Supply Current	I _{DD}	Fout=434MHz, 13dBm, 3V		13		mA
RF Power On/Off Ratio	Pratio	300MHz-450MHz		60		dB
Pout supply voltage	Pvol	300MHz-450MHz			3.6	V
Transmitted	Pout	Fin=315MHz, Vdd=5V		10		dBm
Power	Tout	Fin=434MHz, Vdd=5V		10		dBm
Data Rate		OOK/ASK mode	0.5		10	Kb/s
OSCI operating Frequency	F _{osc}		9	10	20	MHz
RC-OSC	Rosc	RC Oscillator		4		MHz
Operating Temperature	T _a		-40	27	85	°C
Leakage Current	I	Power down mode			1	uA



Functional Description

Serial Data input and Timing

WF306TBM has 3-wire interfaceCLK, DATA, LE) to set R counter, PLL N counter, and other parameters. At the rising edge of CLK, DATA are written into shift-register (MSB: first input data; LSB: last input data). At the rising edge of LE, stored data is loaded into mid-latches.

Note: (1) MSB loaded first.

(

(2) WhenWF 306TBM power is disconnected CLK,DATA, LE are pulled at low

Symbol	Parameter	Min	Max	Unit
t _{CS}	Data to Clock Setup time	10. 5		μs
t _{CH}	Data to Clock Hold time	22		μs
t _{CWH}	Clock Pulse width High	10. 5		μs
t CWL	Clock Pulse width Low	20. 5		μs
t _{ES}	Clock to LE Setup time	10		μs
t _{EW}	LE pulse width	10		μs
	t CS t CH t CWH t CWL t ES	t CS Data to Clock Setup time t CH Data to Clock Hold time t CWH Clock Pulse width High t CWL Clock Pulse width Low t ES Clock to LE Setup time	t CS Data to Clock Setup time 10.5 t CH Data to Clock Hold time 22 t CWH Clock Pulse width High 10.5 t CWL Clock Pulse width Low 20.5 t ES Clock to LE Setup time 10	t CS Data to Clock Setup time 10.5 t CH Data to Clock Hold time 22 t CWH Clock Pulse width High 10.5 t CWL Clock Pulse width Low 20.5 t ES Clock to LE Setup time 10

11-Bit data are transfer from shift-register into the latches, MSB first, LSB last. The last two LSB bits control the register address. The bit format is as below.

Where C1, C2 are control bits, determines the register address.

Register Address control bits	S	Register	Note
C2	C1		
0	0	R0	

0	1	R1	
1	0	R2	
1	1	R3	

For R0 register, R0<8:7> control charge pump current, R0<9> not used.

		R	coun	ter				CP cur	rent	Not used				
LSB										MSB				
C1	C2	N N N N N		N	N	N								
		1	2	3	4	5	6	7 8 9		9				
0	0		RO											

function	R0<8:7	>		
	N8	N7	Icp (uA)	
	0	0 0		
	0	1	1.0	
	1	0	1.5	
	1	1	2.0	

R counter is controlled by initial 6-Bits N<6:1>, see below table. Default state, R=10

R<6:1>	N6	N5	N4	N3	N2	N1
1	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
63	1	1	1	1	1	1

Note:

- (1) MSB load first.
- (2) R≥1
- (3) $R = R1x2^0 + R2x2^1 + ... + R6x2^5$, R = 1 to 64.

For R1 register, R1<9>=1, power down chip. Other bits control B counter.

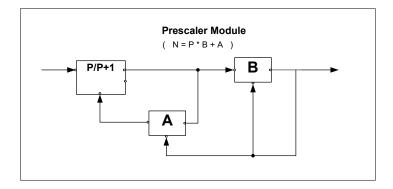
		В	coun	ter		Global Powerdown									
LSB						MSB									
C1	C2	N N N N N				N	N	N	N	N					
		1	2	3	4	5	9								
1	0		R1												

B counter are controlled through 8-Bits, according to below table, N8 default state is 1, else bits are zeros.

В	N8	N7	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
255	1	1	1	1	1	1	1	1

 $B = N1x2^{0} + N2x2^{1} + ... + N8x2^{7}, B \ge 1$, Divider ration: 1 to 255 (B \ge A),

For R2 register, R2<9> not used. R2<8> select N-divider modulus P.


Mode	Clk	A Counter						N divider	Spur control	
sel	sel							select	control	
LSB										MSB
C1	C2	N	N	N	N	N	N	N	N	N
		1	2	3	4	5	6	7	8	9
1	1	R2								

	R2<8> control N-divider mode					
	0	1				
function	P=16	P=32				

Counter (N) consists of one 7-Bits SWALLOW COUNTER (A Counter), one 8-Bits PULSE COUNTER (B counter), and one P/(P+1) prescaler. When counter A counts, dual module prescaler divider ration is P+1. When A counter is overflow but B counter still counts, dual module prescaler divider ration is P, P=16, or P=16

$$N = P \times B + A, B \ge A$$

The default state N=320, P=32, B=10, A=0.

A counter is controlled by initial 7-Bits, see below table.

A	N7	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
127	1	1	1	1	1	1	1

Pulse swallow formula: fvco = [(P * B) + A] * fosc / R,

- fvco, VCO oscillation frequency
- B, 11-Bits B counter's divider ration, 1-255
- A, swallow A counter's divider ration, $0 \le A \le 127$, $A \le B$.
- fosc, crystal oscillation frequency
- R, 6-Bits R counter divider ration, 1-63
- P, dual module prescaler, P = 16/32.

For R3 register, R3<2:1>=1, not used. R3<6:3> control power amplifier transmitting power. R3<9:7>=1, not used.

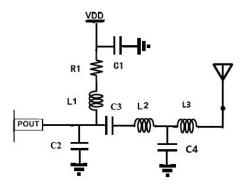
		Not used		TX power control				Not used		
LSB										MSB
C1	C2	N 1	N 2	N 3	N 4	N 5	N 6	N 7	N 8	N 9
1	1	R3								

R3<6:3>	Function, tune TX power	
0000	Def power	
0001	Max power	
1110	Min Power	

Crystal Oscillator

The crystal oscillator circuit consists of a colpitts oscillator. It can drive 10MHz-30MHz crystal without external capacitors required. The crystal driver stage can also take input clock as input clock buffer.

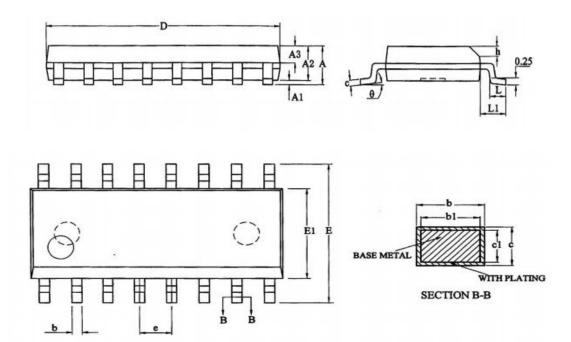
The R counter is used to divide the crystal clock down to the low frequency clock, which is sent to PFD in PLL block as reference clock.


PLL Block

The PLL consists of phase-frequency detector (PFD), charge pump, loop filter, voltage-controlled oscillator (VCO), and divider (N). The PFD compares two signals and produces an error signal which is proportional to the two signal phase difference. The error signal is used to control the VCO to run fast or slow.

The divider N counter is selectable through SPI interface. The VCO oscillation frequency range is tunable between 300 MHz-500 MHz.

RF OUTPUT


The POUT pin can be matched to 50 Ohm with a T-type circuit. The supply voltage can be as high as 3.6V. Below table is suggested inductor and capacitor value for different frequency.

Frequency (MHz)	L1 (nH)	L2 (nH)	L3 (nH)	C1 (uF)	C2 (pF)	C3 (pF)	C4 (pF)	R1 (Ω)	Note
315	100	82	82	1.0	1.0	5	1.8	100	
433	82	68	68	1.0	1.0	5	1.2	100	

Package Information SOP-16

SYMBOL	MILLIMETER						
SYMBOL	MIN	NOM	MAX				
A	_	_	1.75				
A1	0.05	_	0.225				
A2	1.30	1.40	1.50				
A3	0.60	0.65	0.70				
ь	0.39	_	0.48				
ы	0.38	0.41	0.43 0.26 0.21 10.10				
С	0.21	_					
cl	0.19	0.20					
D	9.70	9.90					
E	5.80	6.00	6.20				
EI	3.70	3.90	4.10				
e	1.27BSC						
h	0.25	_	0.50				
L	0.50	-					
Li	1.05BSC						
•	0	-	8,				