The difference between of pressure sensor 5V Vs 10V analogue outputs?

Pressure sensors offer a variety of voltage output options — so what actually separates one analogue voltage output from another? Let’s take a look.


목록

As controllers that read sensor signals have evolved, designers now have far more flexibility. Many output options differ only slightly — some manufacturers keep an edge through custom designs, while others have specific benefits. The output types discussed here all need at least a 10 VDC supply (0–10 V and 1–10 V outputs typically require 12 VDC). The 0.5–4.5 V ratiometric output is traditionally powered from a 5 VDC regulated supply, although other arrangements do exist. Millivolt outputs have their own advantages too, but this piece focuses on amplified voltage outputs from pressure sensors.

Zero-referenced outputs

Traditional pressure sensor outputs include 0–5 V and 0–10 V. In Europe it’s common to use zero-referenced outputs that sit at 0 V when the pressure is zero. These sensors can be built as three-wire or four-wire units. The advantage of 0–10 V is obvious — it gives you twice the span of 0–5 V. The main drawback, though, is that at zero pressure there’s no signal, so you can’t tell whether there really is no pressure or if the sensor has failed (for instance a cut wire, a damaged sensing element or circuit over-voltage). Take water pressure monitoring — if the sensor reads 0 다섯, the system can’t distinguish between genuinely no pressure and a broken sensor. That ambiguity can lead to pump control failures and, in the worst case, flooding.

WF5837C 압력 센서
WF5837F Sensors

Outputs that still show a voltage at zero pressure

To get around that problem, there are sensors that still give a voltage at zero pressure — WF offers variants such as 1–5 V, 1–6 V, 0.25–5 V and 1–10 V. The 1–5 V type is the most common: it outputs 1 V at zero pressure and gives a 4 V span for measurement, so it provides a useful “alive” indication. The 1–6 V and 1–10 V options suit applications needing a wider span while still having a non-zero signal at zero pressure. A 0.5–2.5 V output is often used in remote sensing, particularly for battery- or solar-powered devices — the lower voltages and currents help stretch operating life. 에이 0.5 V zero reading clearly shows the sensor is working; 그만큼 2.5 V span still gives you adequate resolution for pressure or level measurement.

Intelligent fault signalling

Industrial pressure sensors are getting smarter. With modern electronics and microcontrollers, sensors can be programmed to signal a “fault” condition. You can set the output to go outside the normal range (for example roughly 10% below the minimum or above the maximum) to flag an issue. So if an overpressure event ruptures the isolation diaphragm, a 1–5 V sensor can be configured to output less than 1 V or more than 5 V to alert the controller. In pump control systems this kind of feature helps avoid flooding, dry running or excessive wear.

WF pressure sensors cover a very wide measurement range — from under 1 PSI up to 100,000 PSI.

결론

Pick the output that balances span/resolution, fault detectability, and power/compatibility — 1–5 V is a safe, all-round choice; 0–10 V when you want more span; low-voltage outputs for power-limited remote systems.

위의 소개는 압력 센서 기술의 적용 표면 만 긁는 것만. 다양한 제품에 사용되는 다양한 유형의 센서 요소를 계속 탐색 할 것입니다., 그들이 어떻게 일하는지, 그리고 그들의 장점과 단점. 여기에서 논의 된 내용에 대한 자세한 내용을 원한다면, 이 안내서의 뒷부분에서 관련 콘텐츠를 확인할 수 있습니다.. 시간이 걸리면, 이 가이드의 세부 사항을 다운로드하려면 여기를 클릭하십시오. 공기 압력 센서 제품 PDF 데이터.

다른 센서 기술에 대한 자세한 내용, 제발 센서 페이지를 방문하십시오.

코멘트를 남겨주세요

귀하의 이메일 주소는 공개되지 않습니다. 필수 입력란이 표시되어 있습니다 *

맨 위로 스크롤