The difference between of pressure sensor 5V Vs 10V analogue outputs?

Pressure sensors offer a variety of voltage output options — so what actually separates one analogue voltage output from another? Let’s take a look.


カタログ

As controllers that read sensor signals have evolved, designers now have far more flexibility. Many output options differ only slightly — some manufacturers keep an edge through custom designs, while others have specific benefits. The output types discussed here all need at least a 10 VDC supply (0–10 V and 1–10 V outputs typically require 12 VDC). The 0.5–4.5 V ratiometric output is traditionally powered from a 5 VDC regulated supply, although other arrangements do exist. Millivolt outputs have their own advantages too, but this piece focuses on amplified voltage outputs from pressure sensors.

Zero-referenced outputs

Traditional pressure sensor outputs include 0–5 V and 0–10 V. In Europe it’s common to use zero-referenced outputs that sit at 0 V when the pressure is zero. These sensors can be built as three-wire or four-wire units. The advantage of 0–10 V is obvious — it gives you twice the span of 0–5 V. The main drawback, though, is that at zero pressure there’s no signal, so you can’t tell whether there really is no pressure or if the sensor has failed (for instance a cut wire, a damaged sensing element or circuit over-voltage). Take water pressure monitoring — if the sensor reads 0 V, the system can’t distinguish between genuinely no pressure and a broken sensor. That ambiguity can lead to pump control failures and, in the worst case, flooding.

WF5837C圧力センサー
WF5837F Sensors

Outputs that still show a voltage at zero pressure

To get around that problem, there are sensors that still give a voltage at zero pressure — WF offers variants such as 1–5 V, 1–6 V, 0.25–5 V and 1–10 V. The 1–5 V type is the most common: it outputs 1 V at zero pressure and gives a 4 V span for measurement, so it provides a useful “alive” indication. The 1–6 V and 1–10 V options suit applications needing a wider span while still having a non-zero signal at zero pressure. A 0.5–2.5 V output is often used in remote sensing, particularly for battery- or solar-powered devices — the lower voltages and currents help stretch operating life. a 0.5 V zero reading clearly shows the sensor is working; the 2.5 V span still gives you adequate resolution for pressure or level measurement.

Intelligent fault signalling

Industrial pressure sensors are getting smarter. With modern electronics and microcontrollers, sensors can be programmed to signal a “fault” condition. You can set the output to go outside the normal range (for example roughly 10% below the minimum or above the maximum) to flag an issue. So if an overpressure event ruptures the isolation diaphragm, a 1–5 V sensor can be configured to output less than 1 V or more than 5 V to alert the controller. In pump control systems this kind of feature helps avoid flooding, dry running or excessive wear.

WF pressure sensors cover a very wide measurement range — from under 1 PSI up to 100,000 PSI.

結論

Pick the output that balances span/resolution, fault detectability, and power/compatibility — 1–5 V is a safe, all-round choice; 0–10 V when you want more span; low-voltage outputs for power-limited remote systems.

上記のはじめには、圧力センサー技術のアプリケーションの表面を傷つけるだけです. さまざまな製品で使用されるさまざまな種類のセンサー要素を引き続き探索します, 彼らはどのように働くのか, そして彼らの利点と短所. ここで説明していることの詳細が必要な場合, このガイドの後半で関連するコンテンツをチェックできます. あなたが時間に押されている場合, ここをクリックして、このガイドの詳細をダウンロードすることもできます 空気圧センサー製品PDFデータ.

他のセンサーテクノロジーの詳細については, お願いします センサーページにアクセスしてください.

コメントを残す

あなたのメールアドレスは公開されません. 必須フィールドにマークが付いています *

一番上までスクロール