空気圧プレスデバイスに入る空気圧を測定するための差圧センサー

カタログ

1. Measurement Principles of the Chip in Pneumatic Presses

1.1 Chip Package Overview

The MEMS differential pressure sensor chip in comes in an SOP16 or DFN package with dual micro-port barbs for pressure lines, directly SMD-mounted on PCBs. Pads on the chip bottom provide power, signal, and ground connections.

1.2 Microstructure and Strain Detection

A thin silicon diaphragm sits between two micro-cavities. Differential pressure causes micron-scale deflection, sensed by an integrated resistive bridge or capacitive element and converted into an electrical signal.

1.3 Signal Conditioning and Output

Built-in low-noise amplifiers and temperature compensation circuits output a standard 0.5–4.5 V analog signal or optional I²C/SPI digital interface, ready for PLC or embedded MCU integration.

1.4 Temperature Drift and Linearization

Calibration data stored in on-chip EEPROM compensates for temperature drift and zero offset, ensuring accuracy better than 0.2% FS from -40 °Cに +125 °C.

2. Performance Advantages and Requirements

2.1 High Integration and Lightweight

The chip’s compact package and micro-barb ports reduce volume and weight, ideal for miniaturized pneumatic modules.

2.3 Vibration and Shock Resistance

The silicon MEMS structure resists up to 20 g shock and 10 g vibration, adapting to the dynamic switching of pneumatic presses.

2.4 Cost-effectiveness and Mass Production

Standard semiconductor fabrication and SMD assembly drive down per-unit costs, enabling scalable deployments.

WF WF200SPZ 0.1BG S16 AT

3. Mounting and Reflow Soldering Considerations

3.1 PCB Design and Layout

  • Allocate clearance around the chip for unobstructed port access.

  • Design pads per manufacturer recommendations and compatible with no-clean, lead-free reflow paste stencils.

3.2 Reflow Profile Control

  • Peak temperature below 260 °C, with a total reflow time under 60 s.

  • Solder the electrical pads first, then secure the port interfaces with low-temperature adhesive or localized soldering.

3.3 Tubing Connection and Sealing

  • Use soft silicone tubing sized to fit micro-barbs with at least 3 mm insertion depth.

  • Reinforce connections with miniature clamps or heat-shrink tubing to prevent vibration-related loosening.

3.4 ESD and Cleaning

  • Follow strict ESD protocols before and after placement, and remove flux residue with ionized air or IPA.

  • Avoid chlorine-based cleaners to protect MEMS structures.

4. Case Studies and Performance Validation

4.1 Small-scale Pneumatic Assembly Monitoring

On a smart device housing line, the sensor chip tracked cylinder force to ensure proper insertion, boosting yield by 5%.

4.2 Online Diagnosis and Alerts

Deviation of 10% from nominal differential pressure triggers system alerts for potential line blockages or leaks, enabling fast maintenance.

4.3 Data Integration and Cloud Platform

I²C data is converted by an MCU and sent via MQTT to the cloud, where analytics predict equipment health.

4.4 Long-term Stability Testing

After 3000 hours of operation, drift remained under 0.5% fs, confirming suitability for high-cycle applications.

結論

The MEMS differential pressure sensor chip in offers compact integration, 迅速な応答, robust interference immunity, and cost-effective mass production for pneumatic press applications. Proper PCB layout, controlled reflow soldering, secure tubing, and ESD practices are essential to ensure reliable performance. This solution provides precise, lightweight, and efficient monitoring support for automated assembly processes.

上記のはじめには、圧力センサー技術のアプリケーションの表面を傷つけるだけです. さまざまな製品で使用されるさまざまな種類のセンサー要素を引き続き探索します, 彼らはどのように働くのか, そして彼らの利点と短所. ここで説明していることの詳細が必要な場合, このガイドの後半で関連するコンテンツをチェックできます. あなたが時間に押されている場合, ここをクリックして、このガイドの詳細をダウンロードすることもできます 空気圧センサー製品PDFデータ.

他のセンサーテクノロジーの詳細については, お願いします センサーページにアクセスしてください.

コメントを残す

あなたのメールアドレスは公開されません. 必須フィールドにマークが付いています *

一番上までスクロール